
Inferring the Degree of a Curve from Empirical Data

An Apology for (some) Statistical Tools

The  best  statistical  tools  are  those  that  provide  a  rigorous  and  standardized 
measurement  for  a  concept  that  already  exists  in  natural  language.  These  include,  for 
example, our measures of probability, correlation, significance, and similarity. Since linguistic 
meanings  shift,  and  are  relatively  imprecise  in  comparison  with  mathematics,  these 
identifications  are  never  perfect.  We are always  left  with  inane  caveats  like  the  infamous 
“significant results may not be significant” or the badly abused phrase “correlation does not 
imply causality.” And it is true that very few educated adults can provide a full and accurate  
explanation of Pearson's r, or even how to calculate a standard deviation. Yet those of us who 
have had any kind of successful math education are apt to remember that such calculations 
are fairly simple, that they are intuitively sensible approaches to the problems they address, 
and  that  at  some  moment  in  the  past,  we  understood  them  intimately  enough  to  pass 
judgement  on  their  validity.  This  type  of  understanding  can  extend,  I  think,  even  to 
multivariate  regression  and cluster  analysis,  and  it  is  of  the  utmost  value  in  providing  a 
common epistemology for public debate.

These tools, then, are distinctly different from many other forms of statistical analysis, 
which are so opaque that almost all readers must accept or reject their results on faith, as  
received knowledge from an authority. I've discussed the general problems with this recently,  
in the context of the “debate” between zetetics and spherecists.  A more specific and more 
meaningful case would be John Lott, whose larger patterns of deceit and self-promotion put 
extraordinary strain on the the please-just-trust-my-opaque-analysis-of-X argument, as Ted 
Goertzel and others have pointed out. Again, modeling algorithms, while enormously useful, 
are  often  so  complicated  and  nuanced  that  they  can  only  really  be  understood  by  their 
creators, like the machines of some mad scientist in a Gothic horror novel. In arenas such as 
climate change, for instance, the strong emphasis on modeling has presented the public with 
mathematics as a black box, and the results have been disastrous.

I make these remarks, first of all, in apology for the fact that some of my own statistical  
methods  have  been  fairly  opaque.  Recently  I  have  set  about  re-working  one  data  set,  in  
particular, that I think I have sinned against in this vein. But in this article, I am proposing a 
specific tool, which I call a Bethel Test, and I want to make it clear why I think the tool is  
useful.

Degrees and Derivatives as Metaphor

Lately  I  have  been  working  on  a  set  of  problems  in  which  the  natural-language 
metaphors reference (more or less directly) the concepts of polynomial degree or the closely 
related  concept  of  derivatives  and  antiderivatives  in  calculus.  The  underlying  question is 
whether it is appropriate to describe a particular data set as patternless or as having a “trend”, 
and if  does have a  trend,  whether  it  is  best  described as  linear,  quadratic,  cubic,  or  nth-
polynomial-degree,  or even as an exponential  function (which in polynomial  terms would 
have an infinite degree).

Polynomial equations do the yeoman's work of mathematical explanation in a range of 
fields,  because they  translate  easily  into  simple  narratives  about  trends,  and in  the  other 
direction they translate nicely into calculus. Most commonly, this takes the form of spatial,  
temporal,  and  kinetic  metaphors.  In  Metaphors  we  Live  By,  Lakoff  and  Johnson  have 



suggested that such directional  metaphors are irreducible parts of human thought;  in any 
event  they  are  certainly  ubiquitous.  For  instance,  the  derivative  chain  position,  velocity,  
acceleration is built into many other explanations. In popular discussions of the recession, it 
is common to hear references to the economy “at a standstill” or “in decline” or “in free-fall”: 
respectively, these reference a position value, and then its first and second derivatives. These 
notions can be intuitively daisy-chained to higher levels. Even though most of the public does 
not know or use the semi-official continuation of that derivative chain (jerk, jounce, snap,  
crackle,  and pop),  we hear  a  reference to  the  third derivative  of  position in  phrases  like 
Campbell Newman's claim that the economy is “on a power dive into the financial abyss”. 
Implicitly,  a “power dive” is an accelerated free-fall,  which is itself  an accelerated decline, 
which is a continuous change in position. Such descriptions are distinct from one another in 
mathematically meaningful ways, and they are also easily perceived metaphors.

Similarly, discussions of Hubbert peak theory (i.e. peak oil) often highlight the fact that 
a  curve  can  be  trending  in  one  direction  while  its  derivative  is  moving  in  the  opposite 
direction,  a  concept  that  goes  beyond  simple  polynomials.  Various  phrases  are  used  to 
reference this sort of dual  trend, some of them rather oblique, but such discussions often 
resort to graphs of derivatives, such as energy-return-on-energy-investment charts. Since the 
conceptual popularization of peak oil in the last decade, Hubbert's language itself has become 
a referent metaphor for complex curves of all kinds: we can speak casually of “peak social  
media” or “peak Microsoft” or “peak Ron Paul”.

A  related  issue  involves  data  that  is  informally  or  semi-formally  described  as 
“exponential growth”, rather than polynomial. This includes biological populations, economic 
indicators,  and  even  industry  benchmarks  such  as  Moore's  Law  of  microprocessor 
miniaturization.  There  are  sometimes  theoretical  considerations  for  suspecting  that  a 
measurable phenomenon can be explained by an exponential function: for instance, it seems 
reasonable  to  model  population  growth  as  an  iterated  multiplication  of  the  current 
population,  and such a model  yields an exponential  curve.  Nevertheless,  other theoretical 
models  for  population  growth  are  possible,  which  take  into  account  carrying  capacity  or 
demographic transition effects. These models suggest their own curves, perhaps polynomial 
or  logistic.  The  choice  among  these  mathematical  narratives  is  not  always  intuitive.  For 
instance, the US population is often referred to as as an example of exponential growth. Yet if  
someone with no a priori beliefs was shown a graph of that population over the 20th century, 
as below, they would probably conclude that it approximated a merely linear function. (And I 
will argue that it is better described as quadratic.)



The belief that a curve is exponential can create a sort of extrapolative logical fallacy. 
All time series can be described as having an average rate of growth (or decline). It often  
seems innocuous to reify that average as a feature of the system in question, and then project 
it  into the  future.  This  is  frequently  a  basic assumption in economic forecasting.  Yet  this 
implies  that  the  system is  necessarily best  modeled by  an  exponential  function,  which is 
hardly ever the case. A fairly standard quantitative fallacy in the media is to focus on that  
implied exponentiation, rather than on the numbers themselves.  Absurd possibilities abound: 
for instance, in their first year of life, an average male baby gains weight at about 10% per 
month. It follows that by the time the child is five years old, they will weigh more than a ton. 
We are familiar enough with human growth rates to know that they are not exponential, but 
the same logic may seem persuasive when applied to a less intuitive metric, like the GDP of 
China.

These matters of degree are of the utmost importance to policy initiatives,  whether 
personal, corporate, or public. In a non-linear variation on Zeno's paradoxical race, we can 
note that the quadratic tortoise will  always beat out the linear Achilles in the end. And the 
cubic snail  will  eventually beat the quadratic tortoise, and so forth.  Thus it  is  crucial that  
political initiatives, on whatever level, operate in the same “polynomial degree” as the events 
they seek to address. If there is a second-degree influx of refugees to a region, a first-degree 
response will not be adequate for long. A community cannot hope to deal with a third-degree 
increase in solid waste by using a first-degree policy of reusable shopping bags. And so on and 
so forth. We like to think that “every little bit counts”, and this is true enough in an additive 
sense, but addition is no use when your opponents are multiplying or using hyperoperations.

To my knowledge, Malthus' 1798 Essay on the Principle of Population is one of the first 
pieces of political economy to specifically highlight this issue. He compared the supposedly 
linear curve of food production with the supposedly exponential curve of human population, 
and  drew  a  well-known  and  apocalyptic  conclusion.  Among  the  critiques  of  Malthusian 
doctrine are the claims that food production is non-linear, and that population is not in fact 
exponential. But how can we be sure? Recently, the North Carolina legislature, in one of the 
more striking moments of politicized mathematics, attempted to ban the use of non-linear 
equations in the context of climate change models.  I am unclear if they wanted to ban all 
quadratic equations (a policy many frustrated algebra students might support) or only the 
ones they didn't like. At any rate, such questions beg for standardized metrics.

What is intriguing to me about these examples is that while we have various natural-
language  descriptions  that  reference  the  mathematical  concepts,  there  is  no  immediately 
forthcoming mathematical tool to turn to in evaluating the natural-language claims! Textbook 
curve-fitting methods either rely on subjectively “eyeballing” the data, or else make a priori  
assumptions  about  the  nature  of  the  curve.  Generally  either  of  these  methods  tends  to 
minimize  the  polynomial  degree  of  the  curve  being  fit,  both  to  avoid  over-fitting  and  to 
simplify the resulting explanation. While those are reasonable goals for most problems, they 
do not help us determine what the most explanatory degree for such a curve is. At the same 
time, the suite of more advanced tools we might use, such as log-linear analysis,  becomes 
increasingly opaque (e.g. dummy variables to deal with negative values). More importantly, 
such tools tend to be specific to certain types of curves,  adding a second level  of opacity:  
perhaps the researcher is simply choosing the tool that will give them the result they desire.

My interest in creating the Bethel Test was to analyze the “degree” of trends within a 
variety  of  data  series  in  a  way  that  seems  intuitively  defensible,  and  relatively  easy  to 
understand. I assume a sequence of paired, real-valued data sets, H and V, ordered by H. The 
output  of  the  Bethel  Test  is  a  claim that  the  data  exhibits  meaningful  trends  over  some 
number of degrees, and the directionality of those trends.



Simplified Bethel Test (where values of H are equidistant)

The special case of a data series where the H values are equidistant helps to illustrate 
the principle of this test, and it is the standard for annualized time series data, which included 
most of my original candidates. In this case,  n values of V are ordered by the corresponding 
equidistant values for H. Spearman's rho (ρ) is then calculated for H and V, as well as any of 
the standard tests of significance for ρ. (I will use the Fisher-transform method throughout).  
Spearman's  rho  is  a  common  non-parametric  measure  of  whether  or  not  two  series  of 
numbers  occur  in  roughly  the  same  order.  In  this  usage,  it  lets  us  know  whether  V  is  
increasing, decreasing, or neither, while H increases.

If the value for ρ is not significant, the Bethel test stops. If it  is significant, we record 
the positive or negative sign of ρ: a positive sign meaning that V tends to increase with H, a  
negative sign meaning that V tends to decrease as H increases. Then we iterate the test in the 
following manner. The n values of V are replaced by n-1 values of ∆V (i.e. V2-V1 , V3-V2, etc.). 
Spearman's rho is then calculated for this new data set, as compared to its original ordering,  
and the significance of the new ρ is calculated again. We continue this process, recording the 
sign of ρ each time, until we reach a point where ρ is insignificant.

Ultimately, the Bethel test produces a sequence of signs, perhaps {+,+} or {-,-,+} or {} 
or {+,-,+,+,-}. In the example shown above, we begin with a set of nine values (0, 1, 10....) 
These values are increasing, as is visually obvious in the graph. The difference between each 
pair of successive values (1, 9, 14....), shown below, is also increasing. The difference between 
those pairs of successive values (8, 5, 4....) is decreasing. And at the next iteration, there is no 
significant pattern of increase or decrease. Thus we have a Bethel result of {+,+,-}, which can 
be  reasonably  interpreted  as  having  three  “degrees  of  trend”:  velocity,  acceleration,  and 
(negative)  jerk,  to  use  the  physical  metaphor.  Notably,  the  ability  of  Bethel  Tests  to 
acknowledge curves with trends in multiple directions distinguishes it from log-linear analysis 
and similar techniques in question, and brings it closer to to the way that such curves are 
described in natural language narratives.



Bethel Test with Non-Equidistant H

For  data  sets  where  the  values  of  H  are  not  equidistant,  a  slightly  more  complex 
algorithm is needed. Instead of comparing ∆V with the original ordering, we will compare the 
slope values ∆V/∆H with the original ordering of H. With each iteration of the test, n-1 new 
values  for  H  are  calculated  by  taking  the  midpoints  of  each  sequential  pair  of  H values 
( (H1+H2 ) / 2 , etc.). Note that for special case of equidistant H values, the definition above 
provides the same result.

Calculator

I have created a web-based calculator for Bethel testing here. It uses comma-separated 
values; I hope it is fairly simple to use. Please contact me with questions, and please let me 
know if you find results from empirical data that exhibit more than three degrees of trend.

Some Empirical Observations

Looking over real-world historical data, it quickly becomes apparent that very few time 
series  exhibit  three  or  more  degrees  of  trend  in  a  Bethel  test,  even  when  they  present  
phenomena that are popularly referred to as “exponential”.  For instance,  the graph of US 
population discussed above is merely {+,+} or quadratic. The growth of Facebook from late 
2004 to 2012 is also quadratic.

Most long-range human behavior appears to be either patternless, linear or quadratic. 
On the other hand, it is often possible to isolate sub-sections of a time series that have third 
degree trends. For instance, the graph below shows the production of personal cars in Japan, 
1950-1998. Overall, at alpha = 0.05, the time series is {+}: car production was increasing, but  
not in an accelerated way. However, there are many sub-sections of this data which give {+,
+}:  accelerated  growth.  And  there  are  9  sub-curves  that  give  {+,+,+}  (hyper-accelerated 
growth) all of them in the 1950-1969 time-frame.

Such high-degree curves demand an explanation, and it is not hard to suggest one. In 
the  1950s  and  1960s,  Japan  was  rebuilding  its  pre-war  industrial  infrastructure  with 
substantial  help  from  the  United  States.  During  this  recovery,  Honda  and  Toyota  both 
produced exceptional products, and began to serve both a substantial domestic market and, 
increasingly, an international market.

http://www.zemita.net/bethel.htm


A similar confluence of factors can help to explain cubic growth in other situations. For 
instance, US government receipts display cubic growth between 1950 and 2007. This curve, 
however, subsumes two others: the population of the country was increasing, and the value of 
the dollar was declining. In constant dollars per capita, US government receipts only increase 
quadratically.

A third example of a cubic increase is more striking: the population of the city of Perm, 
in Russia, across a stunning 220 years. Without question, Perm (briefly known as Molotov) 
has  benefited  from  constant  and  accelerated  growth  as  one  of  Russia's  major  industrial  
centers,  both under the  Czars and the Soviet  Union. But  Perm is  distinct  from cities  like 
Manchester or the Ruhgebeit  in that it was essentially non-existent prior to the industrial  
revolution. Like the situation with post-war Japan, it attains cubic growth in part because of  
its humble origins.

Finally, there are examples of very high-degree curves over short time horizons, such as 
the Weimar hyperinflation, which has a degree of 17, and would probably be even higher if the 
metrical  resolution allowed.  I  would  suggest,  however,  that  for  most  such events,  we are 
recording  a  catastrophic  breakage,  rather  than  a  continuous  curve.  When  a  currency 
depreciates a hundredfold in three weeks, the actual experience of market participants is not  
inflation but much more akin to confiscation.

Examples 

This  list  is  always  being  added  to.   Please  let  me  know  if  you  find  anything  
interesting.

{} "trendless"

US homicide rate per capita, 1960-2011 (significant at 0.1)
Random number sequences

{-} "negative linear"

Raw copper production in Africa, 1992-2001 (at 0.01)
US voter turnout, 1960-2010 (at 0.1)

{+} "linear"

Mexican Immigration to the US, 1894-1973 (at 0.01)

{+,+} "quadratic"

Chinese energy production, 1978-2006 (at 0.01)
US Population 1900-2000 (at 0.01)
Population of Tiflis 1800-1990 (at 0.01)
Membership on Facebook, late 2004 to 2012 (at 0.01)
Automobile fatalities in the US, 1899-1932 (at 0.01)



Number of televisions in the US, 1945-2006 (at 0.01)
CREO list of mammal species extinct since 1500 (at 0.05)
Compact fluorescent lamp sales, 1988-2001 (at 0.01)
HIV infections, cumulative 1980-2001 (at 0.01)
Energy input needed to catch fish, Lake Chamo, 1998-2006 (at 0.05)
Number of Walmarts in the US, 1962-2006 (at 0.01)

{+,-} "diminished linear"

US reported rape rate per capita, 1960-2011 (at 0.01)
Population of London, 1750-2000 (at 0.01) 
{-,+}

Decline in hits to a website for 15 days following a traffic spike (at 0.1)

{-,-} "negative quadratic"

Conversion efficiency of Jehovah's Witnesses (in hours of work per baptism), 1962-2011 (at 
0.02) (notes)

{+,+,+} "cubic"

Population of Perm (Molotov), 1750-1970 (at 0.02)
Japanese Car Production, 1950-1969 (at 0.05)
US Government Receipts, 1950-2007 (at 0.1)
World photovoltaic energy production, 1971-2001 (at 0.05)
World wind energy production, 1980-2001 (at 0.01)
Height of the tallest building on earth, 2500 BC to 2014 (at 0.05)

{+,+,-} "diminished quadratic"

US Census world population estimate, 1950-2012 (at 0.01)

{+,+,+,+} "quartic"

Cellular phone subscribers, 1985-2001 (at 0.1)
Number of Walmarts in the US, 1962-1981 (at 0.1)
Maximum number of transistors per circuit, 1971-2014 (at 0.05) (notes)

{+,+,+,+,+,+,+,+,+,+,+,+,+,+,+,+,+}

Reichsmark exchange rate to gold, 1/18 to 9/5/23 (at 0.01)

{+,+,+,...} "exponential"

http://zemita.net/moore.pdf
http://zemita.net/wwtw.pdf


The Fibonacci Sequence.
Any exponential sequence in the format V = x^H, where x > 1.

{+,+,+,...,-,+,-,+,-,...}

Any exponential sequence in the format V = H^x, where the initial number of + degrees is the 
truncated value of x.

{+,-,+,-,...}

The Harmonic Sequence.
Exponential sequences in the format V = H^x, where x is between 0 and 1.

{-,+,-,+,...}

Exponential sequences in the format V = H^x, where x is less than 0.
Exponential sequences in the format V = x^H, where x is between 0 and 1.
Any section of the Fibonacci Sequence, run backwards.


